
J. Fluid Mech. (1970), vol. 40, part 4, pp .  833-858 

Printed in Great Britain 
833 

A point explosion in a cold exponential atmosphere. 
Part 2. Radiating flow 

By DALLAS D. LAUMBACHT AND 

RONALD F. PROBSTEIN 
Fluid Mechanics Laboratory, Department of Mechanical Engineering, 

Massachusetts Institute of Technology 

(Received 31 March 1969) 

The problem considered is that of a strong shock propagating from a point energy 
source into a cold exponential atmosphere with radiative heat transfer in the 
flow behind the shock. The radiation mean free path is taken to be small com- 
pared to the shock radius, so that the shock may be treated as discontinuous and 
the radiative heat flux represented by the Rosseland diffusion approximation. 
The solution obtained is an approximate one based upon the ‘local radiality’ 
assumption and integral method previously utilized by Laumbach & Probstein 
for the case of adiabatic flow. The ‘thin shock’ concepts, which underlie the 
integral method, are extended to the present case of a radiating flow enabling an 
approximate integral of the differential energy equation to be obtained. A 
radiation parameter is developed, which provides an index as to when the effects 
of radiation may be neglected and the flow taken to be adiabatic. The physical 
interpretation of this parameter is that of the ratio of a characteristic radiation 
energy flux to a characteristic kinetic energy flux. When the value of this para- 
meter is less than about 0.1, radiation effects may be neglected. It is shown that, 
when the radiation mean free path varies as a power of the temperature (Tn), 
where n = -7, the infinity of solutions for various polar angles can be trans- 
formed into two distinct solutions thereby essentially eliminating the parametric 
dependence on the polar angle and the atmospheric scale height. For fixed values 
of the radiation parameter the dependence on the explosion energy and the 
atmospheric density at the point of explosion is also eliminated. The results 
presented are for the mean free path-temperature variation indicated, but the 
technique of solution does not have this restriction, though for other temperature 
dependences some of the scaling advantages are sacrificed. The solution demon- 
strates the existence of an independence principle in which the flow becomes iso- 
thermal and independent of the detailed radiation mechanism when the radia- 
tion parameter becomes large. The limiting results of the present analysis for a 
uniform density atmosphere correspond quite well with the exact solutions of 
Elliott & Korobeinikov. The radiating far field behaviour of the descending 
shock is shown to approach that for adiabatic flow, and, consequently, the asymp- 
totic adiabatic solution obtained by Raizer is an appropriate limit to the present 
solution. However, the asymptotic results for the ascending shock show that the 
radiating flow does not approach an adiabatic one but rather an isothermal one. 
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1. Introduction 
In the first part of this work (Laumbach & Probstein 1969, hereinafter referred 

to as ‘part 1 ’), a simplified integral theory was developed for calculating the 
flow field and shock behaviour resulting from a strong point explosion in an 
atmosphere whose density decreases exponentially with altitude. In  part 1, 
the flow field behind the shock was assumed to be adiabatic. The purpose of the 
present paper is to extend that analysis to include the effects of radiation heat 
conduction behind the propagating shock. 

The exact, self-similar solution for a heat-conducting flow behind a strong 
shock propagating in a uniform density atmosphere was first obtained by 
Korobeinikov (1957). Elliott (1960) published the solution to the same problem 
(apparently unaware of the earlier Russian work), but also pointed out the close 
approximation of the self-similar heat conduction term to that for radiation 
heat conduction (Rosseland diffusion approximation) and considered the problem 
in greater detail. In order to obtain a self-similar solution, Elliott found it 
necessary that the radiation mean free path h vary as T”, where T is the tem- 
perature and n = -?$. This condition for self-similarity was first shown to be 
required with heat conduction in a spherically symmetric flow by Bam- 
Zelikovich (1949). For a very high temperature radiating flow, such as occurs 
immediately after an intense explosion, the heat flux is so large that the tem- 
perature profile is essentially flat and, consequently, the temperature gradient 
is zero. The solution for this case has been obtained by Korobeinikov (1956). 

To the authors’ knowledge no analytic solutions for an exponential atmosphere 
have been obtained with radiation heat conduction. One of the purposes of the 
analysis is to obtain an approximate analytic solution by the method of part 1 
and to compare the limiting results for a uniform density atmosphere with the 
exact solutions mentioned. 

2. Theory 
As in part 1, the shock wave is assumed to be sufficiently strong that counter- 

pressure may be neglected and the strong shock relations applied. The gas is 
considered to be a calorically and thermally perfect one characterized by an 
appropriately selected adiabatic exponent y and gas constant I?. Body forces 
due to the earth’s gravitational and magnetic fields and wind effects are neglected. 
Radiation pressure and energy are taken to be small in comparison with the 
material pressure and internal energy. The shock radius is assumed to be large 
in comparison with an appropriate characteristic radiation mean free path. 
These assumptions restrict the analysis to what is termed a ‘low altitude’ 
solution valid up to about 8-10 scale heights above the earth’s surface. The atmo- 
sphere, considered to be initially at  rest and cold, i.e. at  zero temperature and 
pressure, is taken to have an exponential density distribution given by 

po = pBe-h/A. (1) 

Here, A is the scale height of the atmosphere, taken to be a constant, po is the 
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atmospheric density, pB is the density at the burst point, and h is the altitude 
measured positive upward from the point of explosion. 

In  figure 1 is shown a sketch of the shock envelope at  a given time after the 
explosion, showing the polar co-ordinate system used in the analysis of part 1 
and here. The basic simplification to be employed in the theory is what was termed 
in part 1 the ‘local radiality ’ assumption. This assumption is valid when the flow 
is primarily radial, so that the streamlines from the origin can be taken as straight 
and the gradients in the &direction neglected. As the shock becomes increasingly 
asymmetric, the assumption of negligible gradients in the &direction becomes 
less satisfactory. However, it was pointed out in part 1 that the local radiality 
assumption is valid to about the same distances as is the strong shock assumption. 

FIGT~RE 1. Flow geometry. 

Under the assumptions noted the problem is axisymmetric about the vertical 
axis, with the origin in figure 1 the energy release point. Here r is the Eulerian 
co-ordinate of a fluid parcel of thickness dr, and R(t;8) is the position of the 
shock front at  a given polar angle 8. In  the Lagrangian formulation used in 
part 1 and here, the exponential density distribution (1) becomes, in terms of 
the Lagrangian co-ordinate r,,, 

Po = PB exp [ - P o l 4  cos 81. (2) 
53-2 
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Here, ro is defined as the co-ordinate r of a particular fluid particle at the burst 
time t = 0. 

The continuity equation is, of course, unaltered by the presence of radiation, 
and with the local radiality assumption it may be written, for any polar angle, 
as 

With the neglect of radiation pressure the momentum equation is the same as that 
given in part 1, and, in Lagrangian co-ordinates, is 

porgdr, = pr2dr. (3) 

The energy equation is altered by the presence of a finite heat flux q, and, under 
the assumption that the gas is perfect and inviscid, it is given by 

It can be shown (see for example, Vincenti & Kruger 1965) that if laB,/arl/a,B, 
is small compared with unity, where B, is the Planck function and a, is the volu- 
metric absorption coefficient, the Rosseland diffusion approximation may be 
used for calculating the radiation heat flux. This is equivalent to requiring that 

Here, the tilde is used to denote appropriately defined characteristic values 
with A a radiation mean free path, T a temperature, and AT a temperature 
difference over a distance of the order of the shock radius R. Since PIAT, in 
general, is greater than one this condition is satisfied by our assumption that 
the Bouguer number Bu is considered to be small in comparison with unity. 

The heat flux under the Rosseland diffusion approximation is given by 

where s is the Stefan-Boltzmann constant, and A is now taken to be the Rosseland 
mean free path. In  addition, for a perfect gas, 

P = prT, (8) 

where r is an appropriately selected gas constant. 
Since the Bouguer number is assumed small the energy loss due to radiation 

‘leakage’ out through the shock front is negligible. This is due to the fact that 
the ‘radiation toe’, which contains the preheated gas (and consequently the 
energy) ahead of the shock front, has a length of the same order as the radiation 
mean free path (see for example, Zel’dovich & Raizer 1966, pp. 526ff.). As a 
result, the heat flux ahead of the shock may be neglected. Under this condition, 
for a strong shock moving into a gas at rest with the radiation pressure and energy 
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neglected, the conservation conditions across the shock yield (see Elliott 1960; 
or Zel’dovich & Raizer 1966, p. 532) 

us = (1 +)a, (9a) 

Ps = (1 -P)Po@, (9b) 

Here, u is the particle velocity and the shock velocity, with the subscript s 
denoting conditions immediately behind the shock. 

We note that with the introduction of a finite heat flux behind the shock the 
density ratio p is not uniquely determined by y alone, as for the usual strong 
shock conditions, but depends on time through the flow field solution itself. 
Eliminating the shock pressure p s  in (9 c) , we find 

It may be seen that there are two cases for which p approaches the usual strong 
shock limit (7- l ) / (y+ 1). The first is for qs+ 0 with finite, while the second is 
for A+co with qs finite. Since the radiation mean free path is inversely pro- 
portional to the density, and since the density increases exponentially in the 
downward direction, it is clear that the radiation mean free path will tend to 
zero exponentially in the downward direction. Since the temperature gradient 
must remain finite, it follows from (7) that the heat flux at the shock approaches 
zero, whence p-. (7- l)/(-y+ 1) for the downward propagating shock. On the 
other hand, for the upward propagating shock at ‘blowout ’, that is when R + co 
(see part 1), ,f? will also approach the usual strong shock limit. 

In general, however, p depends on the shock location (or time). Its value can 
be determined from conservation of mass by integrating (3)  from the burst 
point out to the shock front, with the result 

Here, ps is the instantaneous density behind the shock which is held constant 
over the integration. Making use of (2) and the definition of p = po/ps yields 

The problem is now treated in a manner similar to the adiabatic flow case 
considered in part 1. The momentum equation is first written in the integral form, 

where ps is the pressure immediately behind the shock front and To is a dummy 
variable. Since the heat flux ahead of the shock is negligible when the Bouguer 
number is small, the total energy of the flow field E remains essentially constant 
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with time. Using ( 3 )  the energy equation may, for a given polar angle, be written 
in the integrated form, 

The integrals in (13) and (14) are now approximated in the same manner as 
for adiabatic flow, and use is once again made of the idea that most of the mass is 
located near the shock. It is to be noted from the strong shock condition (9c) 
that with a finite heat flux at the shock qs, the mass is not concentrated at the 
shock to the same extent as in the adiabatic case. However, for y close to 1 ,  the 
preponderance of the mass is still located there. Consequently, a Taylor expansion 
for r in the Lagrangian co-ordinate ro is considered, with the expansion para- 
meterized in the time t through the Taylor coefficients and R :  

r(ro,t) = R + -  
avo ! €2 

Only the first three terms in the expansion have been retained, since these are 
all that are required to obtain the expressions at  the shock for r and its first two 
time derivatives, the velocity and the acceleration. 

From the continuity equation (3) and the definition of p, 

Using (1  6) and differentiating (15 )  with respect to t yields 

r = 

- =  ( l - p ) R +  --- I? (rO-R),  (:: i:lR ) ar 
at 

a2r 
at2 
- = 

Evaluating the above relations at  the shock, we find 

rs = R,  

The detailed development leading to ( 1 8 ~ ) )  which is parameterized in 8, is some- 
what subtle, and is given in the appendix. 
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The quantity r2 (a2r la t2 )  in the integrand of (13) is now approximated by 
its value at  the shock given by (18). In this way, the dominant contribution to 
fhe integral is obtained. Replacing po by (2) and integrating yields 

where the reduced variable 7 is defined by 

and the pressure immediately behind the shock from (9b) and (2) is 

Use is now made of the condition that most of the mass is concentrated at the 
shock, which, to the order of the present approximation, implies that r is not a 
function of ro, so that, for any r + R, the corresponding value of ro is zero (see part 
1). Thus p(r ,  t )  = p(0 ,  t ) ,  and the internal energy term of (14) is evaluated from 
(19) by setting ro = 0. The kinetic energy term in (14) is now approximated through 
the value of (&/at), given by (186). Replacing po by ( 2 ) ,  integrating and combining 
terms leads to an ordinary, second-order differential equation for 7 as a function 

Here f(q), g(7) and h(7) are defined by 

As in the adiabatic case we introduce the reduced time, 

In  terms of this reduced time, (22) transforms to 

(25bl  
where the prime is used to denote differentiation with respect to t*. 
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From ( 2 5 )  it is clear that, if the parametric dependence of the solution on 8 
is to be eliminated, this must be accomplished through the temperature depen- 
dence of A, and, further, that this must be a power law relation. Therefore, the 
dependence of h on the thermodynamic variables p and T is taken to be 

where pn is standard density and @ is an arbitrary, dimensionless function. 
Since l?T, cc A2 cc qJ21cos301, to achieve this elimination n must be given by 

(27) n = - 17-. 

This coincides with the temperature variation of h required in order for a self- 
similar solution to exist in the uniform density case (see for example, Elliott 
1960). The conditions for the existence of a self-similar solution with any type of 
heat conduction in a spherically symmetric flow were first formulated by Bam- 
Zelikovich (1949) (see also Sedov 1957, p. 232). 

Radiation mean free path data (see, for example, Armstrong et al. 1961) 
show that (27) is a realistic approximation to the temperature variation of h 
over the range from 6000 to 60,000 O K .  Over this temperature range the density 
variation is given quite closely by 

6 

In  view of the scaling advantages and the relatively large temperature range 
where this is valid, the dependence of h on the thermodynamic variables is 
taken to be 

= a @)T-'eZ. (29) 

Substituting the above value of h into ( 2 5 )  yields 

f (q)q"+q(T)q'2- - (7)  ( 7 ' 2 P  = 1 (0 < 8 d $4, 

f(7) 7" + q(7) 7'2 + ~ ( 7 )  ( 7 ' ~  = - 1 ( in  6 e d TI, 

( 30a) 

(30b)  

where 

with the 'radiation parameter ' K defined by 

It may be seen that through the adoption of (29) and the introduction of the 
length scale A/cosB and the time scale (4rrpBA5/Ejcos55\)~ it is possible to scale 
all motions of the ascending shock from a single solution of ( 3 0 4  and all motions 
of the descending shock from a single solution of (30b). Further, either solution 
can be scaled for arbitrary values of A, while for fixed values of the radiation 
parameter K either solution can also be scaled for arbitrary values of E and pB. 

The effect of radiation heat transfer is seen to enter only through the para- 
meter K appearing in the function H(q) .  This parameter is equivalent to the ratio 
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of the Bouguer number to the Boltzmann number (for definitions see, for example, 
Goulard 1964), and can be physically interpreted as the ratio of a characteristic 
radiation energy flux to a characteristic kinetic energy flux. It is analogous to 
the quantity A introduced by Korobeinikov (1957) and the quantity K intro- 
duced by Elliott (1960). In  interpreting his parameter K ,  Elliott concluded that 
it increased with increasing energy yield. However, it is clear that, on the con- 
trary, the radiation parameter increases for decreasing energy yield. Furthermore, 
the effect on K of a change in burst point density is seen to be much greater than 
that which would result from the same relative change in E .  

Since (30) are autonomous, they can be recast with 7 as the independent vari- 
able to yield two first-order equations in f 2 :  

1 for in < 0 < n. (33b) 

These equations can be integrated by straightforward numerical methods for 
first-order equations (e.g. Runge-Kutta technique), by making use of the ex- 
pression (12) for p, which can be evaluated once the density distribution has been 
determined. The appropriate initial conditions at  7 = 0 are determined from the 
uniform density solution discussed in § 3. Once the integration has been carried 
out, the behaviour of 7 = q(t*) can be found from the relation, 

The pressure distribution is given from (19)) (24), (29) and (32) by 

(35) 
with p ,  obtainable from (21). 

To determine the density distribution the energy equation ( 5 )  must be inte- 
grated. We note that if, say, the two variables p and q were known as a function 
of ro and t ,  then, in principle, the equation could be integrated for p. Since the 
pressure distribution has been determined, this requires that q be known. The 
heat flux is however not known in advance and even if it were the approach out- 
lined would at best be difficult. Once again, therefore, we resort to an approxi- 
mate integral method which makes use of the idea that the mass is concentrated 
at the shock. 

The pressure is first of all expanded in a Taylor series about r,, = 0. Since 
we have chosen not to consider the time t explicitly, the expansion is written 
with t parameterized in the Taylor coefficients as 
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with similar expressions written for the temperature and density. Here, the 
subscript b refers to conditions at  the burst point where r and ro are both zero. 
A similar expansion for q gives 

with qb(t) = 0, since by symmetry the temperature gradient is zero at  the burst 
point. 

As y + 1, and the mass becomes more concentrated at  the shock, ro approaches 
zero everywhere except at  the shock front, and consequentlyp, p and T become 
invariant with r except within a relatively thin layer near the shock. However, 
this limit must be treated carefully, since with radiation there is a finite tempera- 
ture with a zero temperature gradient at  the burst point, as opposed to the 
adiabatic case, where both of these quantities are infinite at the burst point. 
As y 3 1, the flow becomes adiabatic (the temperature of a fluid pa,rticle remains 
constant with time), as may be seen from the energy equation ( 5 ) ,  and conse- 
quently this limit is approached non-uniformly. Therefore, as y gets too close 
to 1 or K gets too close to 0,  such that the flow becomes adiabatic, the approxima- 
tion may get progressively worse instead of better. This is easily seen by multi- 
plying ( 5 )  through by y - 1 and noting from (7), (29) and (32) that q is proportional 
to K ,  a result we have already noted in pointing out that K is a measure of the 
radiative heat flux relative to the kinetic energy flux. It is therefore clear that 
either of these limiting values of K or y will cause the flow to become adiabatic, 
thereby invalidating the Taylor expansion about the burst point. 

A more obvious restriction on the analysis is the one imposed by the require- 
ment that the mass be concentrated at  the shock. Consequently, when the shock 
density ratio p is too large, the errors introduced by the approximations may be 
unacceptable. The behaviour of p with respect to y and K may be qualitatively 
estimated from ( 9 b )  and (9c) by once again noting that q is proportional to K .  

In solving the energy equation ( 5 ) ,  it  is found convenient to do so in Eulerian 
variables. We therefore rewrite it in the form, 

As a first approximation to the functions integrated over r ,  we use the idea that 
most of the mass is concentrated at  the shock, and choose to consider p and p 
appearing on the right-hand side of (38) to be independent of r .  This approxima- 
tion applies away from the shock layer for small ro/B. This is exactly the same 
procedure which was carried out in evaluating the first term of (14). From this 
integration an expression for pq can be obtained from which the temperature 
distribution can be determined. Knowing the temperature distribution and 
the pressure distribution, the density distribution can then be obtained from 
the equation of state (8). 

Before carrying out the integration, however, it is necessary to approximate 
on the right-hand side of (38) the variation of q with r .  When p is independent of 
r ,  it  can be seen from the continuity equation (3) that ro varies linearly with r ,  
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since r,, is small and therefore po is essentially constant. Thus, as the mass be- 
comes concentrated a t  the shock, an appropriate tentative first approximation 
is to take q as a linear function of r in carrying out the integration of (38). It must 
be emphasized that i t  is not assumed that q varies linearly with r in the problem, 
but only'that to determine the dominant contribution to the integral on the 
right-hand side this is an appropriate first approximation for small ro/R. 

Under the approximations noted, the right-hand side of (38) becomes a func- 
tion oft alone and, on integrating from any point r to the shock, leads to a relation 
of the form psqs -pq = P(t)(R - r ) .  Clearly, conditions at  the shock are auto- 
matically satisfied. However, a t  the origin, where r+O, this relation will in 
general give a finite heat flux, so that the symmetry condition of q = 0 (i.e. 
aTlar = 0) cannot be satisfied. To overcome this difficulty, we introduce into 
(38) a function of r or 'weighting factor' containing an arbitrary parameter. 
The function's behaviour is such that, while still making use of the above 
approximations, the boundary conditions can be satisfied. We choose rm for 
the function with which to weight pq, and rewrite (38) in the form, 

with the requirement that the parameter m > 1.  
Integrating (39) 

where the barred quantities are dummy variables, or 

Solving for (Q/r)b, and taking the limit as r + 0, 

Substituting the above result into (41), we have finally 

(43) 

Equation (43) (or (41)) is seen to give the correct value of pq a t  the shock and 
at  the burst point, and is thus essentially analogous to the type of result obtained 
from an interior weighted residual method, where the boundary conditions are 
satisfied exactly and the differential equation is approximated within the interior 
region (see, for example, Ames 1965). The free parameter m corresponds to the 
usual undetermined parameter in the method of weighted residuals. Ordinarily, 
the undetermined parameter is selected by requiring that the integral of the 
error, weighted by some arbitrary weighting function, be zero. Instead of 
arbitrarily picking such a function to determine m, the role which it plays 
in (43) is considered. First, it is noted that there is a linear relation between pq 
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and r/R for small r/R which is appropriate. This linear relation is then corrected 
to its proper value at the shock by a power law behaviour in (r/R)", with the 
correction significant within a layer of thickness of the order of Rim. This correc- 
tion must occur in the regime where the density gradient is large, i.e. within the 
shock layer. Hence, m must be of the same order of magnitude as the inverse of 
the shock density ratio, and we therefore choose to set the two equal, such that 

m = lip. (44) 
In carrying out the numerical solutions, it was found that the results were quite 
insensitive to perturbations of m about 1 /P. 

To obtain the temperature distribution, we now substitute ( 7 )  and (29) into 
(43), and on integrating obtain, with m = lip, 

where use has been made of the definition (32). It should be noted that the above 
results are restricted to the temperature dependence of h given by (29). How- 
ever, the approximate technique of integration and the result for pq given by 
(43) are not. In  principle, any other analytic relation for h as a function of 
temperature could be used, however, the scaling advantages introduced through 
a T n  dependence with n = --? would be lost. 

Utilizing (2)) (8), (9b) ,  (Sc), (20) and (24) reduces (45) to 

With this expression for the temperature distribution, it is now possible to 
evaluate the density distribution by making use of the gas law (8) and the pres- 
sure distribution (35). The resulting expression for the density distribution is, 
however, a function of P and therefore the determination of /3 through (1 2) must 
be found by an iterative method. Once ,I3 has been determined, the basic equations 
(33) and (34) can then be integrated. 

With p determined as above, the density distribution is given explicitly, 
and the relation between r and ro can be found by integrating the continuity 
equation (3), which, in combination with (2) and the definition ,I3 = po/ps, yields 

Since u = &/at, the velocity distribution may then be found by differentiating 
this expression to give 
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For calculational purposes, it is convenient to introduce the reduced Lagrangian 
co-ordinate 

(49) 

Making use of the definition of 7 given by (20) and the chain rule for partial 
derivatives, the following expression for the velocity is obtained: 

From (47) the pressure, density, and velocity can now be found as a function 
of the Eulerian co-ordinate r.  

3. Uniform density atmosphere 
Since no solutions for a radiating point explosion in an exponential atmosphere 

are available, with whioh to compare the present results, we consider the limiting 
case of a uniform density atmosphere for which there are other solutions. The 
exact self-similar solution for heat-conducting flow was first presented by 
Korobeinikov (1957), with numerical calculations for what corresponds to 
one value of the present radiation parameter. The solution was also obtained by 
Elliott (1960), who noted that the form of the heat conduction term required 
for self-similarity is a good approximation to that for radiation diffusion over a 
relatively large temperature range. He published his results in considerably 
more detail, along with numerical calculations for what corresponds to three 
values of the present radiation parameter. In terms of the present analysis, this 
case is given by the limit 7 = RcosO/A+ 0. 

In  the limit 7 --f 0,  the basic differential equations governing the shock pro- 
pagation reduce to the single equation, 

where the equation is here written in dimensional variables, and where 

The k s t  integration of (51), subject to the condition that &-to as R+m, 
gives 

Here, A is a constant given by the expression, 

which can be solved by standard iterative techniques. Integrating (53) with 
R = 0 at t = 0 yields 
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Equation (55) yields values for R which are larger than the exact values for 
y = 1.2 given by Elliott (1960) by 1.0 yo for K = 0.0075, 5.5 % for K = 0.60 
and 14.3% for K = 5.25. These values of K correspond to values of Elliott's 
of 0.5, 10 and 100, respectively. The increasing discrepancy between the values 
given by the present analysis and the exact values can be attributed to the fact 
that for increasing K ,  there is a diminishing proportion of the mass concentrated 
at  the shock front as evidenced by the increasing value of the shock densityratio 8. 
This has a direct effect on the approximation to the internal energy term in (14) 
thereby underestimating it with a consequent overprediction of the kinetic energy 
of the flow. 

rlR 

FIGURE 2.  Flow variable distributions in Eulerian co-ordinates for uniform density 
atmosphere with K = 0.60 and y = 1.2. -, present analysis; --- , Elliott (1960) 
exact . 

A comparison of the predictions for pressure, density, temperature and particle 
velocity behind the shock front for y = 1.2 and K = 0.60 are shown in figure 2. 
Here u is the particle velocity (arlat),, and the flow variables are reduced by 
their values at the shock front, with the exception of the temperature, which is 
reduced by its value at the burst point. These quantities are plotted as a function 
of the Eulerian co-ordinate r ,  which is reduced by the shock position R. The 
results of the present analysis are seen to be in excellent agreement with the 
exact self-similar solution. The results for y = 1.2 and K = 0.0075 are compared 
with the exact solution in figure 3, and once again the comparison is quite close, 
but not to the same degree as for K = 0.60. This difference is due to the smallness 
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rlR 

FIGURE 3. Flow variable distributions in Eulerian co-ordinates for uniform density 
atmosphere with K = 0.0075 and y = 1-2. -, present analysis; --- , Elliott (1960) 
exact. 

rlR 

FIGURE 4. Flow variable distributions in Eulerian co-ordinates for uniform density 
atmosphere With K = 5-25 and y = 1.2. - , present analysis; - - - , Elliott (1960) 
exact. 
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of K and the consequent approach of the solution to that for adiabatic flow, thereby 
diminishing the validity of the approximations used in arriving at  (43). The 
results for K = 5-25 with y = 1.2 are given in figure 4. The comparison with the 
exact solution in this case is the least satisfying; however, the behaviour of the 
flow variables is still predicted quite well. The discrepancy in this case is, of 
course, due to the lack of mass concentration at the shock. 

It is clear from an examination of figures 2-4 that the departure of the flow 
variable distributions from those for adiabatic flow becomes significant for K 

of the order of 0.1. It is of interest to note that the value of K corresponding to 
an energy source of 20 KT released near the earth’s surface is about 0-01. In  
view of the slow variation of K with the total energy E (see (32)), it is clear that, 
for surface bursts (and in fact for altitudes up to about 34), the flow may be 
considered as adiabatic. 

4. Radiation parameter independence principle 
It is easily seen from (30) and (31) that, when K is large, the shock wave be- 

haviour becomes independent of the value of K .  Further, the flow variables also 
exhibit an independence, since in this limit the temperature becomes uniform 
throughout the flow field as may be seen from (46). Consequently, the limit 
K+CO corresponds to isothermal flow behind the shock front, and there exists 
what we choose to call a ‘radiation parameter independence principle ’. 

For the upward propagating shock the independence principle can be applied 
for values of K in excess of about 10. For the downward propagating shock, 
however, K must have a larger value in order to offset the eventual effect of the 
e-27 factor in both (31) and (46). It is quite clear that the requisite value of K 

for applying this principle to the downward propagating shock is dependent 
upon the distance to which one wishes to extend the analysis. For a distance of 
2 4  at a polar angle of T ,  K should be in excess of about 100, for example. 

The exact, self-similar solution in a uniform density atmosphere for the case 
when the independence principle applies (i.e. the isothermal limit) was obtained 
by Korobeinikov (1956). In this limit (54) reduces to 

This expression gives a value for R in (55) ,  which for y = 1.4 is in excess of 
Korobeinikov’s value by 12.2 yo. This difference can again be directly attributed 
to the small proportion of the mass which is concentrated at the shock front. 

In  this limit, i.e. y-f 0 and fc-+oo, the pressure distribution in (35) reduces to 

and, since the flow is isothermal, 

p --. P - - 

I P S  Ps  
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Substituting (57) and (58) into the expression for /3 (12) yields 

From this result it is seen that the density ratio across the shock is independent 
of the value of y, as was found to be the case by Korobeinikov (1956). It then 
follows from (57) and (58) that the dimensionless flow variable distributions will 
also exhibit this invariance. Solving (59) for P yields 

P = 0.429. (60) 

In  terms of Korobeinikov’s 8,’ this gives 

8, = P( 1 - p)  = 0,245, (61) 

which compares extremely well with the value of 0.244 from Korobeinikov’s 
exact solution. 

To find r as a function of r,,, (57) and (58) can be substituted into the con- 
tinuity equation (3) and the resulting expression integrated to obtain 

Differentiating this expression with respect to time yields the particle velocity 

Substituting (62) into (57) and making use of (58) yields 

The pressure and density distribution and the velocity distribution given by 
(64) and (63) above are plotted wersus the reduced Eulerian co-ordinate rlR 
in figure 5,  and the comparison is seen to be surprisingly good in view of the 
relatively large value of the shock density ratio P. The ‘stagnant core’ effect 
predicted by Korobeinikov (1956) is in evidence in the present approximation, 
although not to as great an extent. This is not surprising, however, since the 
present analysis assumes the flow variables to be analytic functions of the 
Eulerian co-ordinate, and does not admit discontinuous derivatives such as those 
occurring at  r /R  = 0.494 in the exact solution. 

In  a manner similar to the above, the corresponding flow field distributions 
can be obtained for K+CO but with q finite, i.e. in an exponential atmosphere. 
However, there are at present no exact solutions with which to compare the 
results and this has not been carried out. 

F L M  40 54 
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rlR 

FIGURE 5 .  Flow variable distributions in Eulerian co-ordinates for uniform density 
atmosphere in isothermal limit (K  3 a). - , present analysis; - - - , Korobeinikov 
(1956) exact. 

5. Results 
Numerical results for the exponential atmosphere have been obtained for 

y = 1-2 and K = 0.60. These particular values were selected on the basis of their 
practical applicability, with the value for y corresponding to that appropriate 
for high temperature air and the value for K corresponding to a burst at  about 
6 or 7 scale heights above 8ea level. 

The shock velocity 8, in the downward direction is given as a function of the 
shock position R in figure 6, where it is compared with the results from part 1 
for a shock driven by an adiabatic flow field. A significant result of this comparison 
is that the radiating flow field is preceded by a shock wave travelling at a velocity 
approximately 30 yo faster than that for the adiabatic case. This same result is 
also found from the uniform density calculations (see (53)). The increased shock 
speed can be directly attributed to the reduction in the proportion of the total 
energy exhibited as internal energy when the flow behind the shock is radiating. 
This is evidenced by the reduction in temperature of the central core of the flow 
field. 

The shock velocity of the upward propagating shock is plotted as a function 
of the shock position in figure 7 where it is compared with the shock velooity for 
adiabatic flow. As for the downward propagating shock, there is a significant 
difference between the shockvelocityfor the two flow conditions. The higher shock 
propagation velocity for the radiating flow can once again be attributed to the 
fact that a smaller proportion of the energy is exhibited as internal energy. 
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FICTTRE 6.  Shock velocity in downward direction (in < 0 < n) as a function of 
shock position for y = 1.2. 
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FIGURE 7. Shock velocity in upward direction (0 < 6 < $m) as a function of 
shock position for y = 1.2. 
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It is seen that the shock displays the same feature as an adiabatic flow, in that it 
reaches a minimum velocity, beyond which it accelerates to an infinite velocity 
(within the framework of the non-relativistic approach which has been used). 

The flow variables behind the downward propagating shock are shown as a 
function of rlR in figure 8 for R cos OlA = - 1-0. It is seen that the pressure and 
velocity distributions are only slightly affected by the exponential atmosphere, 
but that an appreciable influence is evidenced in the temperature and density 
profiles. The temperature profile has steepened considerably from its initial 
shape and the temperature ratio Tb/T has more than doubled. There is, of course, 
a commensurate change in the density profile. It may also be seen that the flow 
field for the downward propagating shock is approaching that for adiabatic 
flow as it must, since q --f 0 as 7 -+ - m. 

0 a 
rIR 

FIGURE 8. Flow variable distributions in Eulerian co-ordinates at RcosO/A = - 1.0 for 
y = 1.2 and K = 0.60; downward direction (4.. < 8 G n). 

The flow field distribution in Eulerian co-ordinates for the upward propagating 
shock is given in figure 9 for RcosO/A = 2.0. The dimensionless pressure and 
velocity distributions are seen to be only slightly affected by the exponential 
atmosphere. However, due to the sensitivity of h to the exponential density 
distribution, the temperature profile is appreciably changed, with T,/T, - 1 
reduced from its initial value of 5-4 to 0.35. Correspondingly, the density dis- 
tribution is seen to be approaching that of the pressure. In  figure 10 the flow field 
for the upward propagating shock is shown at  RcosO/A = 4.0. Here it is seen 
that the temperature profile has become essentially flat with the pressure and 
density curves almost coincident. The velocity and pressure distributions are 
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FIGURE 9. Flow variable distributions in Eulerian co-ordinates at RcosB/A = 2.0 fo 
y = 1.2 and K = 0.60; upward direction (0 < 19 < in) .  

0 0.2 0.4 0.6 0.8 0 

rlR 
FIGURE 10. Flow variable distributions in Eulerian co-ordinates at  RcosO/A = 4.0 for 

y = 1.2 and K = 0.60; upward direction (0 < B < in). 
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seen to be affected only slightly. It should be noted that the flow field distribution 
is not approaching one characteristic of an adiabatic flow, but instead is approach- 
ing that for an isothermal flow. Asymptotically, of course, as 7 + co the Rosseland 
diffusion approximation is no longer applicable; however, it is quite clear that 
the temperature profile in the vicinity of the shock front will continue to be flat, 
owing to the large value of h and the high temperatures associated with an 
accelerating shock. 

case 

FIGURE 11. Shock density ratio (p,/p,) as a function of shock position for 
y = 1.2 and K = 0.60. 

The density ratio across the shock is, of course, a function of time and, con- 
sequently, of shock position. The value of the shock density ratio p = po/ps is 
plotted as a function of shock position in figure 11.  For the upward propagating 
shock, p starts out. a t  the uniform density value of 0.130, and initially increases 
as the temperature distribution begins to flatten. As the variation of the tem- 
perature profile diminishes, the value of p becomes essentially dependent on the 
pressure distribution, and therefore only on momentum and mass conservation. 
The approach of /3 to ( y  - l) /(y + 1) is thus due to the requirements imposed by 
the simultaneous satisfaction of these two conservation relations. I n  discussing 
the shock boundary conditions (9), it has already been pointed out that this 
result is t o  be expected for large 7. 

The value of p for the downward propagating shock diminishes monotonically 
to (y  - l) /(y + 1) over a distance of about 1 scale height. The reasons underlying 
the approach to this limit are significantly different from those for the upward 
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propagating shock. In  this case, the heat flux q in (7),  evaluated at  the shock, 
approaches zero due to the exponential decrease in the radiation mean free 
path as seen from (29) and (2). The approach of /3 to ( y -  I) / (?+ 1 )  in this case 
was also noted previously when the shock boundary conditions (9) were given. 

It is of interest to examine the far field results of the present analysis in the 
upward and downward directions. For the downward propagating shock, the 
appropriate asymptotic solution for comparison is the self-similar one obtained 
by Raizer (1963),  since the flow field is approaching the adiabatic limit as - 7  
becomes large. In  this limit, the third term on the left-hand side of (22) tends to 
O / O ,  since / I + ( y - l ) / ( y + l )  and e-q+oo. To treat this limit properly, the 
expansion for (Pr/at2),  in ( 1  8 c) must be appropriately revised for the case where 
q = 0. However, this result has already been obtained in part 1 for adiabatic 
flow. Consequently, the asymptotic form of (30b)  is the same as given there. 
One particular result of interest is the asymptotic expression for the shock 
velocity which was found to be 

(65 )  

The descending shock velocity obtained from the integration of (33b)  and 
(34 )  is shown as a function of time in figure 12, where it is compared with the 
result given by (65 )  and with the self-similar, asymptotic plane shock solution 
obtained by Raizer (19631, which is of the same form as (651, but with a a function 
of y and different from 2. The value of a was not computed by Raizer for y = 1-2, 
however; the value of a = 1.31, corresponding to the curve attributed to Raizer in 
figure 12, was obtained from an extrapolation of results for a(y)  plotted in 
figure 10 of part 1. The difference between the two asymptotes can be directly 
attributed to the difference in the two constraints imposed in obtaining them. 
The present solution is based upon a conservation of energy constraint, which is 
appropriate as long as the local radiality assumption is valid, so that the energy 
contained within a given radial slice is essentially invariant with time. The 
constraint imposed in the Raizer solution is that the pressure be zero at an 
infinite distance behind the shock. As noted in part 1, a better comparison between 
the present analysis and Raizer's solution can be obtained by relaxing the 
energy constraint and imposing the condition that the pressure go to zero 
at ro = 0. It should be emphasized that the appropriate constraint in the regime 
of practical interest, i.e. distances up to 2-3A downward, is the constant energy 
constraint. Further, it should be noted that the solution does not approach the 
asymptotic limit until 7' N or at a distance of about lOA, which is well 
beyond the range of validity of the present analysis. 

The asymptotic limit of ( 3 0 a )  for 7 large can be readily obtained (see part 1 
for the procedure). In  particular, it can be shown that 

aA 1-/3 A 
r - t  /I r - t '  

h o s e  __ = ~- 

where /I = ( y -  l ) / ( y +  l), so that a = 2 / ( y -  1).  The time r is the time after 
burst when AcosO becomes infinite and the shock wave emerges at infinity. 
In  view of the fact that the analysis is based upon the Bouguer number being 
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small) an assumption that becomes invalid above 8-10 scale heights, this asymp- 
totic limit has littIe foundation in physical reality. Nevertheless, it is of interest 
to note that the shock velocity does have the expected asymptotic form at ‘blow- 
out )) though the coefficient ct cannot be expected to be reliably given. For this 
reason, the asymptotic results for the upward propagating shock are not discussed 
further. 

FIGURE 12. Shock velocity in downward direction (tn < 8 < 7r) as a function 
of time for y = 1.2 and K = 0.60. 
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Appendix 

the shock and ( 1 7 4  yields 
Eliminating a2r/at2 between the radial momentum equation (4) evaluated a t  

where the boundary condition ( 9 b )  has been utilized. Once the pressure gradient 
term in the above expression has been obtained, the resulting value for 
(a2r/ar& may be substituted into (17c) to obtain an expression for the accelera- 
tion in terms of R and its time derivatives. 
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Logarithmic differentiation of the equation of state (8) yields 

The first term on the right-hand side can be evaluated by differentiating the 
conservation of mass relation (3) to obtain 

where (8r/aro)R has been replaced by (16) .  From (2) it follows that 

The second term on the right-hand side of (A2) can be evaluated by making 
use of the diffusion approximation (7) ,  such that 

Making use of the strong shock conditions (9b)  and (9c) along with (16 )  yields 

Substituting (A4) into (A 3) and replacing the pressure gradient term in (A 1 )  
by the resulting expression plus (A 6) determines (a2r/a?$)R82.  Noting that 

d . d  _ -  
dt - Ria' 

the result given in ( 18 c )  then follows from ( 17 c). 
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